Mystery of how fire ants survive floods solved: Insects hook their legs together to form LIFE RAFTS that help them float

Mystery of how fire ants survive floods solved: Insects hook their legs together to form LIFE RAFTS that help them float

U.S. engineers used mathematical modelling and time-lapse photography to unravel how the fire ants self-assemble into their life-preserving raft

Tech researchers said the ants grip each other with mandibles, claw and adhesive pads at a force 400 times their body weight to make their raft

The result was a viscous and elastic material that is almost like a fluid composed of ant ‘molecules,’ and is self-healing

Incredibly, an ant raft can be assembled in less than 100 seconds

By Sarah Griffiths

PUBLISHED: 07:54 EST, 27 November 2013 | UPDATED: 10:51 EST, 27 November 2013

The mystery of how groups of fire ants survive floods has baffled biologists for decades.

But now scientists have worked out how the ants bind together in order to build a kind of raft that enables them to float ‘effortlessly’ for days.

Biologists and engineers used mathematical modelling and time-lapse photography to unravel how the fire ants self-assemble into their life-preserving raft using different body parts, including their claws and mandibles.

They found the tiny creatures linked their bodies together in a similar way to how waterproof fabric is woven.

Mechanical engineering graduate student Nathan Mlot, professor of industrial and systems engineering, Craig Tovey and David Hu, joint professor of mechanical engineering and biology, at Georgia Tech, described how the fire ants act collaboratively rather than individually to form a water-repellent, buoyant raft in the journal Proceedings of the National Academy of Sciences.

An individual ant’s exoskeleton is moderately hydrophobic so it can shrug off water, but the ants enhance their water repellence by linking their bodies together.

The researchers froze the fire ants to observe that they construct rafts when placed in water by gripping each other with mandibles, claw and adhesive pads at a force 400 times their body weight.

The result was a viscous and elastic material that is almost like a fluid composed of ant ‘molecules,’ they said.

The ants spread out from a sphere into a pancake-shaped raft that resisted submerging them in water.

‘It’s a real thrill unravelling what at first looks like chaos,’ Professor Tovey said.

‘To understand what the individual behaviours are and how they combine in order to achieve the function of the group is the central puzzle one encounters when studying social insects.’

Professor Tovey and the team tracked the ants’ travel and measured the raft’s dimensions and found the ants moved using a stereotyped sequence of behaviour.

The ants walk in straight lines, ricocheting off the edges of the raft and walking again until finally adhering to an edge, Tovey said, before explaining that the ant raft is water repellent because of the animals’ cooperative behaviour.

The ant raft provides cohesion, buoyancy and water repellence to its passengers, but even more remarkable, is that it can be assembled in less than 100 seconds.

The raft is also self-healing, so that if one ant is removed from the raft, others move in to fill the void.

‘Self-assembly and self-healing are hallmarks of living organisms,’ Professor Hu said.

‘The ant raft demonstrates both these abilities, providing another example that an ant colony behaves like a super organism.’

The research could have application to logistics and operations research and material sciences, including the construction of man-made flotation devices.

It also could impact the field of robotics, the team said.

Mr Mlot said: ‘With the ants, we have a group of unintelligent units acting on a few behaviours that allow them to build complex structures and accomplish tasks.’

‘In autonomous robotics, t hat’s what is desired – to have robots follow a few simple rules for an end result,’ he added.

About smithereenpestmanagement

Smithereen Pest Management provides IPM pest services to residential and commercial clients in Kansas, Illinois, Wisconsin, Indiana and Missouri. http://www.smithereen.com/
This entry was posted in Midday Fix: Traveler’s tips for avoiding bed bugs Read more: http://wgntv.com/2013/12/17/midday-fix-travelers-tips-for-avoiding-bed-bugs/#ixzz2nsCIR9oB, Mystery of how fire ants survive floods solved: Insects hook their legs together to form LIFE RAFTS that help them float and tagged . Bookmark the permalink.

One Response to Mystery of how fire ants survive floods solved: Insects hook their legs together to form LIFE RAFTS that help them float

  1. What’s Happening i’m new to this, I stumbled upon this I’ve discovered It positively helpful and
    it has helped me out loads. I am hoping to contribute & help
    different users like its aided me. Good job.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s